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A Generalization of the Entropy 
Power Inequality with Applications 

Ram Zamir and Meir Feder, Senior Member, IEEE 

Abstmct-We prove the following generalization of the Entropy Power 
Inequality: 

h ( A 4  L h(A2:) 

where h( . )  denotes (joint-) differential-entropy, g = 51 . . . zn is a 
random vector with independent components, = fl . . . 5, is a Gauss- 
ian vector with independent components such that h(&) = h ( z t ) ,  
i = 1.. . n, and A is any matrix. This generalization of the entropy- 
power inequality is applied to show that a non-Gaussian vector with 
independent components becomes “closer” to Gaussianity after a linear 
transformation, where the distance to Gaussianity is measured by the 
information divergence. Another application is a lower bound, greater 
than zero, for the mutual-information between nonoverlapping spectral 
components of a non-Gaussian white pmcess. Finally, we describe a dual 
generalization of the Fisher Information Inequality. 

Index Terms-Entropy power inequality, non-Gaussianity, divergence, 
Fisher information inequality. 

I. THE GENERALIZATION OF THE ENTROPY POWER INEQUALITY 
Consider the (joint-) differential-entropy h(Ag) of a linear trans- 

formation y = A& where 2 = 2 1  . . . zn is a vector and - 

h(y)AE{- 1% f(y)} (1) 

where we assume that y has a density f(.). Throughout the manu- 
script log 2 = log, 2 G d  the entropy is measured in bits. Assume 
that d imA = m’ x n and RankA = m. In some cases, this entropy 
is easily calculated or bounded: 

1. A is an invertible matrix (i.e., m’ = m = n). In this case 
thus the the linear transformation just scales and shuffles 

entropy is only shifted, 

h(Ag) = h(g) +log 1-41 (2) 

where I 1 denotes (absolute value of) determinant. 
2. A does not have a full row-rank (i.e., m’ > m). In this case 

there is a deterministic relation between the components of y 
and thus 

h(Ag) = -CC . (3) 

3. g = g* is a Gaussian vector. The linear transformation A 
preserves the normality and so 

h(Ag*) = 2 log(27re(AR,Atl~) (4) 

where R, is the covariance matrix of g* and AR,At is the 
covariance matrix of y* = Ag*. Since for a given covariance, 
the Gaussian distribution maximizes the entropy, the expression 
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4. 

in (4) upper bounds the entropy of y = A g  in the general case, 
i.e., 

h(Ac) I h(Ag*)  (5) 

where g* is now a Gaussian vector with the same covariance 
matrix as g. 
In the above three cases g was an arbitrary random vector. In 
what follows we restrict g to have independent components. If 
in addition y is scalar, i.e., y = a121 + . . . + anzn, then the 
entropy-power inequality (EPI) can be used to lower bound its 
entropy. Specifically, by the EPI (see, e.g., [3], pp. 287), 

P ( y )  2 P(alz1) + 1 . .  + P(anzn) (6) 

where P ( y )  = &22h(Y) is the entropy-power of y. An 
equivalent form of the EPI [7] expresses (6) directly in terms 
of the entropy as 

h(did 2 h(atZ) (7) 

where g is a Gaussian vector with independent components 
such that h(&) = h(zE), i = 1.. .R and at = ( a l , .  . .a,). 
An explicit calculation of the entropy in the RHS of (7) yields 

where P is the covariance matrix of g, i.e., it is a diagonal 
matrix whose i-th diagonal element is p ,  = &22h(”t) = 
Var{&} ,  and h(z , )  is the entropy of 2,. The inequalities (6) 
and (7) become equalities iff g is Gaussian. 

We generalize the lower bound (7) to the case where y may be 
a vector, and show below that h(Ag) 2 h(A5) for any A. Unlike 
what one may have expected, this inequality does not follow by just 
using in (7) the vector form of the EPI instead of the regular EPI. To 
see that, recall the vector form of the EPI (see e.g. [7]) 

h(g,+. . .+&) L h(G,+. . .+G,) = - m log27re(G P(.,)) (9) 
2 

where U, E R”, i = 1 . . . R are independent random vectors and 
ii, E R” are independent Gaussian vectors with (proportional) 
covariances R, = P(5,) . K, where K is any covariance matrix 
with a unity determinant (e.g. h’ = I) and (the scalar) P ( g , )  is the 
entropy-power of the random vector U,, 

At that point, one would like to proceed by replacing the RHS of 
(11) with h(&b, + . . . + &Jn) = h(A2). However, this transition 
fails since for m 2, h(z,b,) = -03, or P(z&,) = 0 (due to 
the deterministic relation between the components). Thus, a straight- 
forward application of the vector form of the EPI leads to the trivial 
lower bound h(Ag) 2 -03. 

Other simple attempts to get the desired generalization from the 
vector form of the EPI fail as well. Nevertheless, using a different 
approach, based on a double induction over the matrix dimensions, 
we prove the following. 
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Theorem 1: For any matrix A, 

h ( A 4  L h(AZ) (12) 

The detailed proof is provided in Appendix A. Note that the RHS 
of (12) can be specified explicitly as h(AZ) = 7 log(2.rre(APAt 16) 
where, as above, P is the covariance matrix of which is a 
diagonal matrix whose i-th diagonal element is p ,  = &22h("*),  
and m = RankA. 

Equality in (12) holds in one of the following cases,which corre- 
spond to the three cases mentioned in the introduction: 

1. p is Gaussian (p = 3). 
2. A is a non-singular square matrix (see (2)). More generally, we 

get equality in (12) if A contains all-zero columns, correspond- 
ing to components of c that do not influence y, but after these 
columns are removed A becomes a non-singular square matrix. 

3. A does not have a full row-rank and so both sides of (12) 
equal --oo (see (3)). 

In the i.i.d. case P = p . I, where p = &22h(") is the entropy- 
power of each component of x- and so (12) becomes 

1 1 
-h(Ac) m 2 h(z )  + 5 log((AAtIh).  (13) 

When lAAtI = 1, e.g., in the case of orthonormal transformation, 
(13) is reduced to 

1 
,h(Ap) 2 h(2) .  

As the dimension of 2 becomes large it may represent samples of 
a white stochastic process. In this case the matrix A represents a 
linear transformation of that process. When A represents a filtering 
operation, some projections of 2 are transferred with unity gain and 
the rest are filtered away, and so lAAt( = 1. Thus an interpretation of 
(14) is that after linear filtering the entropy (per degree-of-freedom) 
of a white process is increased. 

The new inequality (12) leads, in general, to tighter bounds 
than the standard vector form EPI. Consider for example a vector 
2 = Ap + By where both p, y are independent vectors with n 
independent components, and A, 8 are nonsingular n x n matrices. It 
is interesting to assess the value of h(2) for evaluating the capacity 
of some additive noise channels. In this case the standard EPI is 
applicable, leading to the bound 

~ ( 2 )  2 P(AE)  + P ( B ~ )  = I A P , A ~ ~ ' / "  + I B P , B ~ I ~ / ~  (15) 

where P ( . )  is the entropy power of a vector defined in (10) and 
P,, Py are diagonal matrices whose elements are the entropy powers 
of the components of p and y, respectively. Our generalization of the 
EPI leads to the bound 

P(2)  2 P(AZ+ Bc)  - = IAP,At + BPyBtl'/". (16) 

By the Minkowski inequality (see, e.g., [7, Theorem 5]), the bound 
(16) is tighter than (15), with equality iff AP,At is proportional to 

- 

spy B ~ .  

11. APPLICATIONS To LINEAR TRANSFORMATIONS 
OF A VECTOR WITH INDEPENDENT COMPONENTS 

A. Closeness to Normality after Transformation 

It is well known that a Gaussian vector stays normal after linear 
transformations. It has also been observed that a non-Gaussian vector 
with independent components becomes "closer" to normality after 
passing through a linear transformation. The case of a non-Gaussian 
stochastic process whose samples are statistically independent (e.g., 

a non-Gaussian white noise) that passes through a linear system 
has drawn a special interest in the recent years in deconvolution 
problems. The closeness to normality of the output in this case has 
been characterized elegantly in [8], and has been used to derive 
techniques for deconvolving the effect of the linear system. In this 
section we use the generalization of the EPI to show that indeed a 
non-Gaussian vector with independent components becomes closer to 
normality, after a linear transformation, in a very specific sense where 
closeness is measured by the divergence (or "relative entropy", or 
"Kullback-Leibler distance") from Gaussianity. 

We recall the definition of the divergence. Let y be an n- 
dimensional random vector, and let y* be another vector. The 
divergence between these vectors is defified, (see, e.g., [5, pp. 2311) 

where f,(.), far* ( e )  are the corresponding probability density func- 
tions, and the divergence is measured in bits. For any two pdf's, the 
divergence is non-negative. The divergence from Gaussianity, i.e., 
the case where y* is Gaussian with the same first and second order 
moments as y, can be expressed as - 

and it is zero iff g is also Gaussian. If there is a deterministic linear 
dependency between the components of y (e.g., when y is the output 
of a system that does not have a full rank) then neither the integral 
in (17) nor the entropies in (18) are well defined, and the following 
more general definition of the divergence is used (see [lo, pp. 201): 

where F and F* are the distributions of y and g*,$ is the 
Radon-Nikodym derivative of the corresponding distributions, and 
the expectation is taken with respect to y. 

Using the generalization to the Entropy Power Inequality,derived 
in the previous section, we provide below an upper bound for the 
divergence from Gaussianity of a linear transformation of a vector 
- L = 2 1  . . . zn with independent components. In stating this result we 
denote by g* a Gaussian vector with independent components, such 
that Var{z,} =Var{z:}. Unlike the previous lower bound for the 
entropy, this upper bound is not trivial even when the transformation 
does not have a full rank. 

Theorem2: For any matrix A, 

(20) 
where m = Rank A, A, is any m x n matrix whose rows span the 
row space of A, P, is a diagonal matrix whose diagonal elements 
are {pl} the entropy powers of the components of p, and R, is the 
diagonal covariance matrix of p* whose diagonal elements are {c;}, 
the powers of the components of p. 

Note that if the components of c are i.i.d., (20) is reduced to 

(21) 
1 -D(Ap; Ap*) 5 D(z ;  z*) 
m 

where z is any component and equality holds if z is Gaussian 
( D ( z ; z * )  = 0) or if A is invertible (after all its zero columns, 
if any, are removed). This theorem follows straight-forwardly from 
Theorem 1, and its detailed proof is given in Appendix B. 

Theorem 2 can be used to show that an i.i.d. process becomes 
closer to normality, in information divergence sense, after passing 
through a linear-time-invariant system. For this we consider the limit, 
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as n goes to infinity, of the normalized divergence per degree-of- 
freedom of n samples of the output process. The inequality (21) 
is satisfied by the normalized divergence for any n and so it is 
satisfied in the limit. The interpretation of inequality (21) in this case 
is that a white process becomes "more Gaussian" after filtering, 
in the sense that its normalized divergence from Gaussianity, per 
degree-of-freedom, decreases. Note that if the filter is invertible, the 
normalized divergence of the entire output process does not change. 
Yet, the divergence from Gaussianity of a finite number of samples 
becomes smaller, since these samples are obtained from the entire 
input process by a non-invertible transformation. 

Finally, it is interesting to note that Theorem 2 yields a stronger 
result than a straight-forward application of the data processing 
theorem for the divergence. For example, when g is i.i.d., the data 
processing theorem for the divergence implies 

D(Ag; Ag*) 5 D(g; a*) = . D(z ;  2"). (22) 

Since n 2 m = RankA, the bound (21) is tighter. 

B. Mutual-Information between Orthogonal 
Projections of an Independent Vector 

A pair of orthogonal projections of uncorrelated Gaussian vector 
are independent and therefore the mutual-information between them 
is zero. This may not be true, however, for non-Gaussian noise. In 
this section we show that the projection of a non-Gaussian vector 
with independent components into two subspaces that span the entire 
space, results in two vectors whose mutual information is lower 
bounded away from zero. Note that since the mutual-information 
is invariant to the representation, it is only a function of the pair of 
linear sub-spaces spanned by the projections. 

Let z be a random variable, and let g be an n-dimensional vector 
of i.i.d. samples, distributed as z. Let AI and Ah be two matrices, 
each with n columns, where RankAI = T (T < n), RankAh = n - T ,  

and the space spanned by the rows of AI is orthogonal to the space 
spanned by the rows of Ah. The rows of A/ and Ah thus span the 
entire space. The projections are denoted 2, = Ala: and yh = Aha. 

One motivation to consider the mutual information I (y l ;  yh) comes 
from the following example. Let X = [ X O ,  . . . , X,-1lt be the DFT 
of g = [zo,. . . ,zn--lIt i.e. 

X k  = - 1 n-l 

J;;; m=O 
~ , e - ~ % ' , ,  k = 0, .  . . ,n - 1, 

where j = g. The random vector represents the spectral 
content of the vector E. In general, it is interesting to find the 
mutual information between , mutually exclusive spectral compo- 
nents of the i.i.d. vector g. For example, the mutual information 
I(X0; XI, .  . . , Xn-l), i.e. the mutual information between the DC- 
component and the rest of the spectral components, has been con- 
sidered in 1121. 

Define the divergence from Gaussianity of 3 (normalized to bits- 
per-sample) as 

A similar definition can be made for Dh. Now, in some applications 
T is fixed, while n becomes large, and so DI can be made arbitrarily 
small. For example, fix T = 1 and let AI be the DC-component, 
i.e., y~ = X O  = 2 E,"=, 5%. Then by the strong form of the central 
limit theorem of $I, DI --* 0 as n + 00. A projection AI for which 
DI -+ 0 as n -+ CO, is referred to as "asymptotically Gaussian 
projection.' ' 

The following theorem underbounds the mutual-information be- 
tween yI  and yh,  per degree-of-freedom (dimension) of %. 

Theorem 3: 

The theorem is proved in Appendix C. Note that by Theorem 2 
the RHS of '(24) is positive, bounded away from zero, unless 2 is 
Gaussian. Also, if AI is an asymptotically Gaussian projection, the 
lower bound becomes the divergence from Gaussianity of x. 

Returning to the example that motivated this problem, we have cal- 
culated explicitly the mutual information between the DC-component 
and the rest of the spectral components for a uniformly distributed 
i.i.d. vector. When the vector dimension n = 2, I(X0;Xi) = 
I ( z o  + zl;zo - zl) = log(;) Si 0.44 bit. For dimension n = 3 
the mutual information is computed numerically, using the relation 

In both cases the mutual information is greater than D ( q ;  zr) = 
0.254, the divergence between a uniform distribution and a Gaussian 
distribution having the same variance. 

Notice that Theorem 3 above provides a lower bound on the 
mutual information, whose main properties are that it is greater 
than zero, and it depends on the divergence from Gaussianity of 
the distribution of each sample, and on the dimension of A I ,  but it 
does not depend explicitly on the projections themselves. However, 
the general problem of estimating the mutual-information between 
orthogonal projections of a white vector (or process) is still open, 
especially, since from the example above, the lower bound seems 
to be untight. A somewhat related subject is to find the mutual- 
information between a subset and its complement in a given set of 
elements, treated in [7]. 

111. A GENERALIZATION OF THE FISHER-INFORMATION-INEQUALITY 
The duality between the EPI and various information inequalities 

has been pointed out in [7]. One example of such dual inequality is 
the Fisher-Information-Inequality (FII) 

K ( X  + E)-' 2 K(X)-'  + K(Y)-'  (25) 

where X and are independent random vectors, and K is the n x n 
dimensional Fisher-information-matrix of an n-dimensional random 
vector having a differentiable density f ,  with respect to a translation 
parameter, defined as 

K = E --Of . - O f t  (26) 
{:2 1 

where Of is the n-dimensional gradient vector of f (see [7]). The 
scalar Fisher-information is defined as J = tr{K} = E{ ~ ~ ~ V f ~ ~ z } .  
The FII (25), whose proof is relatively simple, is actually used to 
prove the EPI (see [ll] and [2]). 

The generalized EPI and this duality motivated us to show the 
following generalization of the FII. 

Theorem4: Let g = z1 ... xn be a vector with independent 
components having a (diagonal) Fisher information matrix K .  Then, 
for any matrix A 

K ( A ~ ) - ~  2 ~ ( ~ j 1 - l  = A K ( ~ ) - ' A ~  (27) 

where j = 21 . . . 2n is a Gaussian vector with independent compo- 
nents, such that J ( i , )  = Var{&}-' = J ( z 2 ) ,  i = 1.. . n. 
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Note that the matrix inequality (27) is in the sense that the 
difference matrix is positive semi-definite. The detailed proof of this 
theorem is given in [13], and here we sketch its structure. Similarly 
to the derivation in [l l] ,  [2] and [6],  where the basic FII was shown, 
we show that 
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where b, is the i-th column of A, and the conditional expectation 
is over zc given y = Ax. This equality can be written in a matrix 
form as 

- 

Using (29) and the Cauchy-Schwarz inequality 

Averaging (30) over 2 gives 

AtQ)A I K ( a ) .  (31) 

Finally, multiplying (31) from the left by 
(AK(.)-'A')-'AK(a))-', multiplying from the right by 
K(g)-'A'(AK(.)-'A')-', and taking the inverse we get (27). 
Note that the Fisher information matrix of the Gaussian vector A$ 
in (27) is given directly by its inverse covariance matrix. 

As in Theorem 1, equality in (27) holds if c is Gaussian or if A 
is invertible. Note that in the i.i.d. case K = J ( z )  . 1, and if we 
further assume that A is orthonormal (i.e., AAt = I), we can rewrite 
inequality (27) in a scalar form as &J(Ag)  5 J ( z ) .  

As in the standard EPI, one may hope to prove the generalized 
EPI, i.e., to prove Theorem 1 from the generalized FII. Recently, 
indeed, we were able to do that, and through the derivation we proved 
additional generalizations of information theoretic inequalities. This 
alternative proof of Theorem 1 is provided in [14]. 

APPENDIX A: PROOF OF THEOREM 1 
We prove (12) for a matrix A, whose number of rows is m = 

Rank A. The case where the number of rows m' > RankA, i.e., A 
does not have a full row-rank, is trivial since both sides of (12) are 
-cm (see (3)). 

The proof is by double induction over m and n. The induction 
boundary conditions are the line m = 1 (any n) and the line m = R. 
in the plain (m,n) E "Z. In the case m = 1 the inequality holds 
by the regular EPI since A is a row matrix. In the case m = n the 
matrix is invertible and so (12) holds with equality. We show below 
that if (12) holds for any (m - 1) x (n  - 1) and m x (n  - 1) matrices, 
then it also holds for any m x n matrix. This is the induction step. 
Fig. 1 shows a path in the plain "2 from the boundary lines to an 
arbitrary point (m,n), which is followed by the induction steps to 
prove the theorem for any m x n matrix. Since m and n are arbitrary, 
the theorem holds for any matrix, provided that the induction step is 
proved. 

To prove the induction step, some matrix manipulations used in 
Gaussian elimination, are needed. Denote by {a,,,}, i = 1 . . . m, 
j = 1. . . n, the elements of the matrix A, and let Rank A = m 2 2. 
Supposq the last column of A is not zero. Otherwise, i.e., if = 0 
for all i, then y does not depend on zn and A is actually m x (n - 1) 
matrix for which the inequality holds by the induction assumption. 
Now if a, = 0, permute a pair of rows of A and the pair of 

\ \ Y  . 

I I I I + n= dimr 
1 2 3 4 5  

Fig. 1. Path from boundary lines followed by induction steps. 

corresponding components of g, so that after permutation a,," # 0. 
This permutation, if needed, does not affect the entropy. 

The next step is to use row operations and make the first (m - 1) 
elements of the last column to be zero. ?is is possible since we 
assured above that a, # 0. Denote by A = T A  the matrix after 
the row operations, where the matrix T has the form 

/1 f f 1 \  

L o  . 1 . I  
Observe that since [TI = 1 the row operations do not change the 

entropy, 

h(Ag) = h(T-'Ag) = h(Ag) - log IT1 = ~ ( A E ) .  (33) 

Define some submatrices of A, as follows 

A :  

where 4, ,= (a,,',. . . , am,n-l) t  is the last row of A withput the 
last term, b, = (O,O, .  . . , O ,  u , , , ) ~  is the last column of A, B is 
obtained by dropping the last column of A (dim B = m x (n - l)), 
A- is obtained by dropping the last row of B (dimA- = (m - 
1) x (n  - 1)) and E- = z1,. . . , zn-l is the vector without the 
last component. Now the matrices A and A- have a full row-rank 
since they are obtained by row operations from the matrix A, which 
has a full row-rank. The matrix B, however, may either have a full 
row-rank, if its last row, iim, does not depend linearly on the other 
rows (i.e., on A-), or a deficient rank, if its last row linearly depends 
on the other rows. 

Note that all the components of Ax, with the exception of the 
last one, are independent of zn. Also observe that, by the induction 
assumption, both the matrix A- (of size (m - 1) x (n 1)) and 
the matrix B (of size m x (n - 1)) satisfy (12), i.e., h(A-g-) 1 
h(A-g-) and h(Bg-)  2 h(Bg-). 

To utilize the induction assumptions, we need to express the 
entropy & interms of entropies associated with lower dimensional 
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matrices, e.g. the entropy of A-e- .  Using the chain rule, 

h(&) = h ( i j l , . . . , i j m )  = h(g,,...,~m-l)+h(gmItil,. . . > Y m - l )  

(34) 
and since 6, = &,g = &g- + am,nzn and (it,. . . , Cm-1) = 
A-g-,  we can rewrite (34) as 

h(Ag) = h(A-g-)  + h(&g- + ~ ~ , ~ z , ) A - g - ) .  (35) 

Notice that am,nzn in the RHS of (35) is independent of both 
&,E- and the condition A-g- .  

Suppose first that the last row of the matrix B linearly depends on 
the other rows. In this case the term &",- in (37) linearly depends 
on A-g-  and does not affect the entropy. Thus, 

h(Ag)=h(A-g-)+h(am,ncn) = h(A-g-)+h(cn)+log larn,nl . 
(36) 

Utilizing the induction assumption, asserting h(A-g-)  2 
h(A-Z-),  and by (33) 

h(Ag) 2 h(A-z - )  + h(zn) + log lam,n I = h(AZ) (37) 

where the second equality follows by applying (36) to h(A2) and 
since h(z,) = h(&). The induction step for this case is proved. 

Consider now the second case where B has a full row-rank. 
Proceeding from (35), we use a conditional version of the EPI 
(originally presented in [2], see also [3] pp. 289) to lower bound 
the entropy of the sum of independent terms in the RHS of (35) 

1. 

1 

h(&) > h(APe- )  + 1 log ( 2 2 h ( & h E - 1 A - Z - )  + 2 2 h ( a m , n z n )  

(38) 
- 2  - 

Since Bg- is a concatenation of A-g-  and &LE-, we can use 
again the chain rule to get 

+ a:,n22h("") . 
(39) 

( h(Ag) 2 h(APg-)+!  log 2 2 [ h ( B Z - ) - h ( A - & - ) 1  
2 

The RHS of (39) is clearly monotonically increasing with h(Bg-).  
Similarly, the function a(t)  = t + log(b2Tot + c) ,  a,  b, c > 0, 
has a positive derivative for all t, and so the RHS of (39) is also 
monotonically increasing with h(A-g-) .  Since by the induction 
assumption h(A-g-)  2 h(A-L-) and h(Bg- )  2 h(Bg-) ,  we 
can lower bound (39) 

h(Ag) 2 h ( A - g - ) + l  log ~ ~ [ ~ ( B x - ) - ~ ( A - z - ) I  + a k , n 2 2 h ( z n ) )  . 
(40) 

2 ( 
To complete the induction step, observe that the conditional version 

of the EPI used in the transition from (35) to (38) holds with equality 
for the Gaussian vector f and thus the RHS of (40) is h(AZ), as 
desired. 0 

APPENDIX B: PROOF O F  THEOREM 2 

Assume, first, that A has a full row-rank, dimA = m x n. By 
Theorem 1, 

h(Ag) 2 h(AZ) = mlog(2?relAPAtIk) 2 (41) 

where P is the diagonal covariance matrix of g, whose diagonal 
elements are pl . . . pn. Thus, 

where h(Ag*) = log(2?relAR,Atlk) and R, is the diagonal 
covariance matrix of g* whose diagonal elements are U: . . . U; (the 

powers of the components of g). Using the identity (18) and the fact 
that (Ag)* = Ag', we get the first inequality in (20) 

Now, if the components of g are i.i.d., then R, = U' I ,  P = p . I 
and so, 

L D ( A 3 ;  Ag*) 5 log ($) = D ( z ;  z*), 
m (44) 

which proves (21). 
For the general case, as shown in Lemma 1 below, 

(45) 

and the second inequality in (20) follows since D(z.;zf) = 
f log (2). Note that while the second inequality in (20) is less 
tight than the first, it is independent of the transformation A. 

Consider now the case where A does not have a full row rank, 
i.e., Rank A = m is less than the number of rows. In this case there 
is an invertible transformation T, such that A = TA, ,  where A, 
is an m x n matrix with full row rank. By the definition (19), the 
divergence is invariant to invertible transformations, and SO, 

D(y. -' !! *)  = D(T-ly; - T-ly*) = D(A,g; A,-*). (46) 

Since A, has a full row rank, we can apply the derivation above 
0 

In the proof we have used the following lemma. 
Lemma 1: Let A and P be n x n positive, diagonal matrices,with 

diagonal elements A1 . . . An and pl . . . p, respectively, A , , p ,  > 0 Vi. 
Then for any m x n matrix A, 

to D(A,g; A,g*), and prove the Theorem. 

(47) 

Proof: Define 

(48) 
A A, rm= max - . 

Clearly, rm . p, - A, 2 0 for any i = 1. .  .n, and so the 
matrix T ,  . P - A is non-negative definite. As a result, the matrix 
A(T,  . P - h)At  is non-negative definite for any choice of an m x n 
matrix A. Thus, we may write the matrix inequality 

A(rm . P - A)At 2 0 0 5 AAAt 5 r ,  . APAt . (49) 

The inequality (49) implies a similar inequality for determinants 
(since JK1 + K2J is greater or equal both JKIJ  and JKz), K I , K z  
semi-definite matrices) 

Pz z = l  ... n 

s 

J A A A ~ I  5 I ~ , A P A ~ (  = ( r , ) m l ~ ~ ~ t l  (50) 

and (47) is proved. 

APPENDIX c: PROOF O F  THEOREM 3 

Using the decomposition of the mutual information to entropies 
and by (M), one can express the mutual-information I ( g I ; g h )  in 
terms of divergence as: 

I&; yh 1 = I(!!;; 2;) - w,; 2;) - DKy, ; 1;) + %,, Y h  ; y; 7 y; ). 
(51) 

Examine now each term in the RHS of (51). Since orthogonality 
implies independence for zero-mean Gaussian vectors, 

I(y;;g;) = 0 . (52) 
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From (23), D(y,;y;) = rDi. By applying theorem 2 to Ah, 

Finally, 

(53) 

since AI and Ah compose together an invertible transformation which 
preserves the divergence. Combining (23) and (51)-(54) yields the 
desired result. 0 
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An Asymptotic Expression for the Information 
and Capacity of a Multidimensional 
Channel with Weak Input Signals 

Vyacheslav V. Prelov and Edward C. van der Meulen, Fellow, IEEE 

Abstract-An asymptotic expression is derived for the Shannon mutual 
information between the input and output signals for a relatively large 
class of continuous alphabet memoryless channels in the case of weak 
input signals, when the input space is multidimensional. We extend hereby 
a result of Ihragimov and Khas’minskii from the one-dimensional to 
the N-dimensional case. The asymptotic expression obtained relates the 
Shannon mutual information function and the Fisher information matrix. 
This expression is used to derive an asymptotic expression for the capacity 
of continuous alphabet memoryless channels with vector-valued weak 
input signals. This asymptotic capacity involves the largest eigenvalue 
of the Fisher information matrix evaluated at the zero input signal. 

Index rem-Continuous alphabet memoryless channel, weak multi- 
dimensional input signal, mutual information, Fisher information, mean 
energy constraint, peak power constraint, asymptotic capacity. 

I. INTRODUCTION 
The investigation of the asymptotic behavior of the capacity 

of communication channels for cases in which certain parameters 
characterizing the transmission can be designated as small has been 
of interest for some time. The reason for this is that the capacity of 
continuous alphabet memoryless channels can be calculated explicitly 
only in a relatively small number of cases. 

When the input signal satisfies certain constraints, the evaluation 
of capacity necessitates the optimization over all probability distribu- 
tions from a certain class. This is the reason why for most channels 
the capacity cannot be explicitly calculated. However, as is well- 
known, there is one case for which the capacity can be calculated 
exactly, namely for a channel with additive Gaussian noise and an 
energy constrained input [7]. 

The first studies regarding the asymptotic capacity of channels 
satisfying certain input constraints when the signal is weak (or 
alternatively when the noise is large) were carried out by Prelov [5]. 

Probably the most interesting from a theoretical and practical 
point of view is the investigation of the capacity of a channel with 
very weak input signals, because in the opposite extreme case of a 
channel with very strong input signals (or alternatively with very low 
noise) reliable transmission can be achieved even without the use of 
information-theoretic methods. 

In this connection it should be mentioned that the asymptotic 
behavior of some characteristics of certain kinds of very noisy 
channels was investigated in Viterbi and Omura [lo, Chapter 31 and 
by Viterbi [ l l ] .  However, the approach taken by those authors is 
different from ours. 
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